C functions have a structure and syntax as follows:

The function name is followed by parentheses which
return value function name enclose any values required by the function when
it executes. each value has to have a type & name.

int custom function(int valuel, int value2) ({
int mResult = valuel * value2;
return mResult;

The body of a function is composed of C statements that
are enclosed in curly braces. Each ends with a semicolon.

Note: In this example, the definition of “custom_function()” states that it requires two integers to
execute and that it will output an integer. If it was actually used in a program it would look

something like this: storedvalue = custom function(7, 34);

Arduino and Processing environments have two built-in functions for handling initialization and then a
main performance loop. With the Arduino these are: “setup () ” and “loop () “. For Processing they
are “setup () " and “draw () ”. These functions don’t return any values (numbers, strings, etc.) so their
return values are “void”:

With the Arduino, the setup is usually used to set pin modes (input or output) and begin communication
with the Serial port or other special sensors you are using.

Any variables that need to be accessed by the various functions your program uses need to be defined
as “global variables” that are not part of a function. Their variable definitions are placed at the begining of
your code, before the setup function.

// (Global variables first)

example. int a_in; // create variable for storing analog readings
int timesTen; // variable for result of math operation
int sensorPin = 5; // variable for analog pin as A5
void setup() { // only do once
Serial.begin(9600);
}
void loop() { // repeat forever
a_in = analogRead(sensorPin); // get 10 bit analog value
a_in = map(a_in, 0, 1023, 0, 255); // scale it to 8 bits

timesTen = custom_function(a_in, 10);
Serial.println(timesTen);
delay(50); // make text less flickery

// (Here’s the defining of the custom function:)

int custom_function(int r, int d)({
return (r * d);

}



