
2/Starting to Code

To get the most out of this book, you
need to do more than just read the
words. You need to experiment and prac-
tice. You can’t learn to code just by read-
ing about it—you need to do it. To get
started, download Processing and make
your first sketch.
Start by visiting http://processing.org/download and selecting
the Mac, Windows, or Linux version, depending on what
machine you have. Installation on each machine is straightfor-
ward:

• On Windows, you’ll have a .zip file. Double-click it, and drag
the folder inside to a location on your hard disk. It could be
Program Files or simply the desktop, but the important
thing is for the processing folder to be pulled out of that .zip
file. Then double-click processing.exe to start.

• The Mac OS X version is a .zip file. Double-click it, and drag
the Processing icon to the Applications folder. If you’re
using someone else’s machine and can’t modify the Appli-
cations folder, just drag the application to the desktop. Then
double-click the Processing icon to start.

• The Linux version is a .tar.gz file, which should be familiar to
most Linux users. Download the file to your home directory,
then open a terminal window, and type:

tar xvfz processing-xxxx.tgz

(Replace xxxx with the rest of the file’s name, which is the ver-
sion number.) This will create a folder named processing-3.0 or
something similar. Then change to that directory:

7

cd processing-xxxx

and run it:

./processing

With any luck, the main Processing window will now be visible
(Figure 2-1). Everyone’s setup is di!erent, so if the program
didn’t start, or you’re otherwise stuck, visit the troubleshooting
page for possible solutions.

Figure 2-1. The Processing Development Environment

Your First Program
You’re now running the Processing Development Environment�
(or PDE). There’s not much to it; the large area is the Text Editor,�
and there’s two buttons across the top; this is the Toolbar.�
Below the editor is the Message Area, and below that is the Con-
sole. The Message Area is used for one-line messages, and the�
Console is used for more technical details.

8 Getting Started with Processing

�

Example 2-1: Draw an Ellipse
In the editor, type the following:

ellipse(50, 50, 80, 80);

This line of code means “draw an ellipse, with the center 50 pix-
els over from the left and 50 pixels down from the top, with a
width and height of 80 pixels.” Click the Run button the (triangle
button in the Toolbar).

If you’ve typed everything correctly, you’ll see a circle on your
screen. If you didn’t type it correctly, the Message Area will turn
red and complain about an error. If this happens, make sure that
you’ve copied the example code exactly: the numbers should be
contained within parentheses and have commas between each
of them, and the line should end with a semicolon.

One of the most di"cult things about getting started with pro-
gramming is that you have to be very specific about the syntax.
The Processing software isn’t always smart enough to know
what you mean, and can be quite fussy about the placement of
punctuation. You’ll get used to it with a little practice.

Next, we’ll skip ahead to a sketch that’s a little more exciting.

Example 2-2: Make Circles
Delete the text from the last example, and try this one:

void setup() {
 size(480, 120);
}

void draw() {
 if (mousePressed) {
 fill(0);
 } else {

Starting to Code 9

 fill(255);
 }
 ellipse(mouseX, mouseY, 80, 80);
}

This program creates a window that is 480 pixels wide and 120
pixels high, and then starts drawing white circles at the position
of the mouse. When a mouse button is pressed, the circle color
changes to black. We’ll explain more about this program later.
For now, run the code, move the mouse, and click to see what it
does. While the sketch is running, the Run button will change to
a square “stop” icon, which you can click to halt the sketch.

Show
If you don’t want to use the buttons, you can always use the
Sketch menu, which reveals the shortcut Ctrl-R (or Cmd-R on
the Mac) for Run. The Present option clears the rest of the
screen when the program is run to present the sketch all by
itself. You can also use Present from the Toolbar by holding
down the Shift key as you click the Run button. See Figure 2-2.

Figure 2-2. A Processing sketch is displayed on screen with Run
and Present. The Present option clears the entire screen before
running the code for a cleaner presentation.

10 Getting Started with Processing

Save and New
The next command that’s important is Save. You can find it
under the File menu. By default, your programs are saved to the
“sketchbook,” which is a folder that collects your programs for
easy access. Select the Sketchbook option in the File menu to
bring up a list of all the sketches in your sketchbook.

It’s always a good idea to save your sketches often. As you try
di!erent things, keep saving with di!erent names, so that you
can always go back to an earlier version. This is especially help-
ful if—no, when—something breaks. You can also see where the
sketch is located on your computer with the Show Sketch Folder
command under the Sketch menu.

You can create a new sketch by selecting the New option from
the File menu. This will create a new sketch in its own window.

Share
Processing sketches are made to be shared. The Export Appli-
cation option in the File menu will bundle your code into a single
folder. Export Application creates an application for your choice
of Mac, Windows, and/or Linux. This is an easy way to make
self-contained, double-clickable versions of your projects that
can run full screen or in a window.

The application folders are erased and re-created
each time you use the Export Application command,
so be sure to move the folder elsewhere if you do not
want it to be erased with the next export.

Examples and Reference
Learning how to program involves exploring lots of code: run-
ning, altering, breaking, and enhancing it until you have resha-
ped it into something new. With this in mind, the Processing
software download includes dozens of examples that demon-
strate di!erent features of the software.

Starting to Code 11

To open an example, select Examples from the File menu and
double-click an example’s name to open it. The examples are
grouped into categories based on their function, such as Form,
Motion, and Image. Find an interesting topic in the list and try an
example.

All of the examples in this book can be downloaded
and run from the Processing Development Environ-
ment. Open the examples through the File menu,
then click Add Examples to open the list of example
packages available to download. Select the Getting
Started with Processing package and click Install to
download.

When looking at code in the editor, you’ll see that functions like�
ellipse() and fill() have a di!erent color from the rest of the�
text. If you see a function that you’re unfamiliar with, select the�
text, and then click “Find in Reference” from the Help menu. You�
can also right-click the text (or Ctrl-click on a Mac) and choose�
“Find in Reference” from the menu that appears. This will open�
a web browser and show the reference for that function. In addi-
tion, you can view the full documentation for the software by�
selecting Reference from the Help menu.

The Processing Reference explains every code element with a�
description and examples. The Reference programs are much�
shorter (usually four or five lines) and easier to follow than the�
longer code found in the Examples folder. We recommend keep-
ing the Reference open while you’re reading this book and while�
you’re programming. It can be navigated by topic or alphabeti-
cally; sometimes it’s fastest to do a text search within your�
browser window.

The Reference was written with the beginner in mind; we hope�
that we’ve made it clear and understandable. We’re grateful to�
the many people who’ve spotted errors over the years and�
reported them. If you think you can improve a reference entry or�
you find a mistake, please let us know by clicking the link at the�
top of each reference page.

12 Getting Started with Processing

�

3/Draw

At first, drawing on a computer screen is
like working on graph paper. It starts as a
careful technical procedure, but as new
concepts are introduced, drawing simple
shapes with software expands into
animation and interaction. Before we
make this jump, we need to start at the
beginning.
A computer screen is a grid of light elements called pixels. Each
pixel has a position within the grid defined by coordinates. In
Processing, the x coordinate is the distance from the left edge of
the Display Window and the y coordinate is the distance from
the top edge. We write coordinates of a pixel like this: (x, y). So,
if the screen is 200×200 pixels, the upper-left is (0, 0), the cen-
ter is at (100, 100), and the lower-right is (199, 199). These num-
bers may seem confusing; why do we go from 0 to 199 instead
of 1 to 200? The answer is that in code, we usually count from 0
because it’s easier for calculations that we’ll get into later.

The Display Window
The Display Window is created and images are drawn inside
through code elements called functions. Functions are the basic
building blocks of a Processing program. The behavior of a func-
tion is defined by its parameters. For example, almost every Pro-
cessing program has a size() function to set the width and
height of the Display Window. (If your program doesn’t have a
size() function, the dimension is set to 100×100 pixels.)

13

Example 3-1: Draw a Window
The size() function has two parameters: the first sets the width
of the window and the second sets the height. To draw a window
that is 800 pixels wide and 600 high, type:

size(800, 600);

Run this line of code to see the result. Put in di!erent values to
see what’s possible. Try very small numbers and numbers larger
than your screen.

Example 3-2: Draw a Point
To set the color of a single pixel within the Display Window, we
use the point() function. It has two parameters that define a
position: the x coordinate followed by the y coordinate. To draw
a little window and a point at the center of the screen, coordi-
nate (240, 60), type:

size(480, 120);
point(240, 60);

Try to write a program that puts a point at each corner of the�
Display Window and one in the center. Try placing points side by�
side to make horizontal, vertical, and diagonal lines.

Basic Shapes
Processing includes a group of functions to draw basic shapes�
(see Figure 3-1). Simple shapes like lines can be combined to�
create more complex forms like a leaf or a face.

To draw a single line, we need four parameters: two for the start-
ing location and two for the end.

14 Getting Started with Processing

�

Figure 3-1. Shapes and their coordinates

Draw 15

Example 3-3: Draw a Line
To draw a line between coordinate (20, 50) and (420, 110), try:

size(480, 120);
line(20, 50, 420, 110);

Example 3-4: Draw Basic Shapes
Following this pattern, a triangle needs six parameters and a
quadrilateral needs eight (one pair for each point):

size(480, 120);
quad(158, 55, 199, 14, 392, 66, 351, 107);
triangle(347, 54, 392, 9, 392, 66);
triangle(158, 55, 290, 91, 290, 112);

Example 3-5: Draw a Rectangle
Rectangles and ellipses are both defined with four parameters:
the first and second are for the x and y coordinates of the
anchor point, the third for the width, and the fourth for the
height. To make a rectangle at coordinate (180, 60) with a width
of 220 pixels and height of 40, use the rect() function like this:

16 Getting Started with Processing

size(480, 120);
rect(180, 60, 220, 40);

Example 3-6: Draw an Ellipse
The x and y coordinates for a rectangle are the upper-left corner,
but for an ellipse they are the center of the shape. In this exam-
ple, notice that the y coordinate for the first ellipse is outside the
window. Objects can be drawn partially (or entirely) out of the
window without an error:

size(480, 120);
ellipse(278, -100, 400, 400);
ellipse(120, 100, 110, 110);
ellipse(412, 60, 18, 18);

Processing doesn’t have separate functions to make squares
and circles. To make these shapes, use the same value for the
width and the height parameters to ellipse() and rect().

Draw 17

Example 3-7: Draw Part of an Ellipse
The arc() function draws a piece of an ellipse:

size(480, 120);
arc(90, 60, 80, 80, 0, HALF_PI);
arc(190, 60, 80, 80, 0, PI+HALF_PI);
arc(290, 60, 80, 80, PI, TWO_PI+HALF_PI);
arc(390, 60, 80, 80, QUARTER_PI, PI+QUARTER_PI);

The first and second parameters set the location, the third and
fourth set the width and height. The fifth parameter sets the
angle to start the arc, and the sixth sets the angle to stop. The
angles are set in radians, rather than degrees. Radians are angle
measurements based on the value of pi (3.14159). Figure 3-2
shows how the two relate. As featured in this example, four
radian values are used so frequently that special names for
them were added as a part of Processing. The values PI, QUAR
TER_PI, HALF_PI, and TWO_PI can be used to replace the radian
values for 180°, 45°, 90°, and 360°.

18 Getting Started with Processing

Figure 3-2. Radians and degrees are two ways to measure an
angle. Degrees move around the circle from 0 to 360, while radi-
ans measure the angles in relation to pi, from 0 to approximately
6.28.

Example 3-8: Draw with Degrees
If you prefer to use degree measurements, you can convert to
radians with the radians() function. This function takes an
angle in degrees and changes it to the corresponding radian
value. The following example is the same as Example 3-7 on
page 18, but it uses the radians() function to define the start
and stop values in degrees:

size(480, 120);
arc(90, 60, 80, 80, 0, radians(90));

Draw 19

arc(190, 60, 80, 80, 0, radians(270));
arc(290, 60, 80, 80, radians(180), radians(450));
arc(390, 60, 80, 80, radians(45), radians(225));

Drawing Order
When a program runs, the computer starts at the top and reads
each line of code until it reaches the last line and then stops. If
you want a shape to be drawn on top of all other shapes, it
needs to follow the others in the code.

Example 3-9: Control Your Drawing
Order

size(480, 120);
ellipse(140, 0, 190, 190);
// The rectangle draws on top of the ellipse
// because it comes after in the code
rect(160, 30, 260, 20);

Example 3-10: Put It in Reverse
Modify by reversing the order of rect() and ellipse() to see the
circle on top of the rectangle:

size(480, 120);
rect(160, 30, 260, 20);
// The ellipse draws on top of the rectangle

20 Getting Started with Processing

// because it comes after in the code
ellipse(140, 0, 190, 190);

You can think of it like painting with a brush or making a collage.
The last element that you add is what’s visible on top.

Shape Properties
The most basic and useful shape properties are stroke weight,
the way the ends (caps) of lines are drawn, and how the corners
of shapes are displayed.

Example 3-11: Set Stroke Weight
The default stroke weight is a single pixel, but this can be
changed with the strokeWeight() function. The single parame-
ter to strokeWeight() sets the width of drawn lines:

size(480, 120);
ellipse(75, 60, 90, 90);
strokeWeight(8); // Stroke weight to 8 pixels
ellipse(175, 60, 90, 90);
ellipse(279, 60, 90, 90);
strokeWeight(20); // Stroke weight to 20 pixels
ellipse(389, 60, 90, 90);

Example 3-12: Set Stroke Caps
The strokeCap() function changes how lines are drawn at their
endpoints. By default, they have rounded ends:

Draw 21

size(480, 120);
strokeWeight(24);
line(60, 25, 130, 95);
strokeCap(SQUARE); // Square the line endings
line(160, 25, 230, 95);
strokeCap(PROJECT); // Project the line endings
line(260, 25, 330, 95);
strokeCap(ROUND); // Round the line endings
line(360, 25, 430, 95);

Example 3-13: Set Stroke Joins
The strokeJoin() function changes the way lines are joined
(how the corners look). By default, they have pointed (mitered)
corners:

size(480, 120);
strokeWeight(12);
rect(60, 25, 70, 70);
strokeJoin(ROUND); // Round the stroke corners
rect(160, 25, 70, 70);
strokeJoin(BEVEL); // Bevel the stroke corners
rect(260, 25, 70, 70);
strokeJoin(MITER); // Miter the stroke corners
rect(360, 25, 70, 70);

When any of these attributes are set, all shapes drawn afterward�
are a!ected. For instance, in E xample 3-11 on page 21, notice�
how the second and third circles both have the same stroke�
weight, even though the weight is set only once before both are
drawn.

Drawing Modes
A group of functions with “mode” in their name change how�
Processing draws geometry to the screen. In this chapter, we’ll�
look at ellipseMode() and rectMode(), which help us to draw

22 Getting Started with Processing

�

ellipses and rectangles, respectively; later in the book, we’ll
cover imageMode() and shapeMode().

Example 3-14: On the Corner
By default, the ellipse() function uses its first two parameters
as the x and y coordinate of the center and the third and fourth
parameters as the width and height. After ellipseMode(CORNER)
is run in a sketch, the first two parameters to ellipse() then
define the position of the upper-left corner of the rectangle the
ellipse is inscribed within. This makes the ellipse() function
behave more like rect() as seen in this example:

size(480, 120);
rect(120, 60, 80, 80);
ellipse(120, 60, 80, 80);
ellipseMode(CORNER);
rect(280, 20, 80, 80);
ellipse(280, 20, 80, 80);

You’ll find these “mode” functions in examples throughout the
book. There are more options for how to use them in the Pro-
cessing Reference.

Color
All the shapes so far have been filled white with black outlines,
and the background of the Display Window has been light gray.
To change them, use the background(), fill(), and stroke()
functions. The values of the parameters are in the range of 0 to
255, where 255 is white, 128 is medium gray, and 0 is black.
Figure 3-3 shows how the values from 0 to 255 map to di!erent
gray levels.

Draw 23

Figure 3-3. Colors are created by defining RGB (red, green, blue)
values

24 Getting Started with Processing

Example 3-15: Paint with Grays
This example shows three di!erent gray values on a black back-
ground:

size(480, 120);
background(0); // Black
fill(204); // Light gray
ellipse(132, 82, 200, 200); // Light gray circle
fill(153); // Medium gray
ellipse(228, -16, 200, 200); // Medium gray circle
fill(102); // Dark gray
ellipse(268, 118, 200, 200); // Dark gray circle

Example 3-16: Control Fill and Stroke
You can disable the stroke so that there’s no outline by using
noStroke(), and you can disable the fill of a shape with noFill():

size(480, 120);
fill(153); // Medium gray
ellipse(132, 82, 200, 200); // Gray circle
noFill(); // Turn off fill
ellipse(228, -16, 200, 200); // Outline circle
noStroke(); // Turn off stroke
ellipse(268, 118, 200, 200); // Doesn't draw!

Be careful not to disable the fill and stroke at the same time, as
we’ve done in the previous example, because nothing will draw
to the screen.

Draw 25

Example 3-17: Draw with Color
To move beyond grayscale values, you use three parameters to
specify the red, green, and blue components of a color.

Run the code in Processing to reveal the colors:

size(480, 120);
noStroke();
background(0, 26, 51); // Dark blue color
fill(255, 0, 0); // Red color
ellipse(132, 82, 200, 200); // Red circle
fill(0, 255, 0); // Green color
ellipse(228, -16, 200, 200); // Green circle
fill(0, 0, 255); // Blue color
ellipse(268, 118, 200, 200); // Blue circle

This is referred to as RGB color, which comes from how comput-
ers define colors on the screen. The three numbers stand for
the values of red, green, and blue, and they range from 0 to 255
the way that the gray values do. Using RGB color isn’t very intu-
itive, so to choose colors, use ToolsԘColor Selector, which
shows a color palette similar to those found in other software
(see Figure 3-4). Select a color, and then use the R, G, and B val-
ues as the parameters for your background(), fill(), or
stroke() function.

26 Getting Started with Processing

Figure 3-4. Processing Color Selector

Example 3-18: Set Transparency
By adding an optional fourth parameter to fill() or stroke(),
you can control the transparency. This fourth parameter is
known as the alpha value, and also uses the range 0 to 255 to
set the amount of transparency. The value 0 defines the color as
entirely transparent (it won’t display), the value 255 is entirely
opaque, and the values between these extremes cause the col-
ors to mix on screen:

size(480, 120);
noStroke();
background(204, 226, 225); // Light blue color
fill(255, 0, 0, 160); // Red color
ellipse(132, 82, 200, 200); // Red circle
fill(0, 255, 0, 160); // Green color
ellipse(228, -16, 200, 200); // Green circle

Draw 27

fill(0, 0, 255, 160); // Blue color
ellipse(268, 118, 200, 200); // Blue circle

Custom Shapes
You’re not limited to using these basic geometric shapes—you
can also define new shapes by connecting a series of points.

Example 3-19: Draw an Arrow
The beginShape() function signals the start of a new shape. The
vertex() function is used to define each pair of x and y coordi-
nates for the shape. Finally, endShape() is called to signal that
the shape is finished:

size(480, 120);
beginShape();
fill(153, 176, 180);
vertex(180, 82);
vertex(207, 36);
vertex(214, 63);
vertex(407, 11);
vertex(412, 30);
vertex(219, 82);
vertex(226, 109);
endShape();

Example 3-20: Close the Gap
When you run Example 3-19 on page 28, you’ll see the first and
last point are not connected. To do this, add the word CLOSE as a
parameter to endShape(), like this:

28 Getting Started with Processing

size(480, 120);
beginShape();
fill(153, 176, 180);
vertex(180, 82);
vertex(207, 36);
vertex(214, 63);
vertex(407, 11);
vertex(412, 30);
vertex(219, 82);
vertex(226, 109);
endShape(CLOSE);

Example 3-21: Create Some Creatures
The power of defining shapes with vertex() is the ability to
make shapes with complex outlines. Processing can draw thou-
sands and thousands of lines at a time to fill the screen with fan-
tastic shapes that spring from your imagination. A modest but
more complex example follows:

size(480, 120);

// Left creature
fill(153, 176, 180);
beginShape();
vertex(50, 120);
vertex(100, 90);
vertex(110, 60);
vertex(80, 20);
vertex(210, 60);

Draw 29

vertex(160, 80);
vertex(200, 90);
vertex(140, 100);
vertex(130, 120);
endShape();
fill(0);
ellipse(155, 60, 8, 8);

// Right creature
fill(176, 186, 163);
beginShape();
vertex(370, 120);
vertex(360, 90);
vertex(290, 80);
vertex(340, 70);
vertex(280, 50);
vertex(420, 10);
vertex(390, 50);
vertex(410, 90);
vertex(460, 120);
endShape();
fill(0);
ellipse(345, 50, 10, 10);

Comments
The examples in this chapter use double slashes (//) at the end
of a line to add comments to the code. Comments are parts of
the program that are ignored when the program is run. They are
useful for making notes for yourself that explain what’s happen-
ing in the code. If others are reading your code, comments are
especially important to help them understand your thought pro-
cess.

Comments are also especially useful for a number of di!erent
options, such as when trying to choose the right color. So, for
instance, I might be trying to find just the right red for an ellipse:

size(200, 200);
fill(165, 57, 57);
ellipse(100, 100, 80, 80);

Now suppose I want to try a di!erent red, but don’t want to lose
the old one. I can copy and paste the line, make a change, and
then “comment out” the old one:

30 Getting Started with Processing

size(200, 200);
//fill(165, 57, 57);
fill(144, 39, 39);
ellipse(100, 100, 80, 80);

Placing // at the beginning of the line temporarily disables it. Or
I can remove the // and place it in front of the other line if I want
to try it again:

size(200, 200);
fill(165, 57, 57);
//fill(144, 39, 39);
ellipse(100, 100, 80, 80);

As you work with Processing sketches, you’ll find yourself creat-
ing dozens of iterations of ideas; using comments to make notes
or to disable code can help you keep track of multiple options.

As a shortcut, you can also use Ctrl-/ (Cmd-/ on the
Mac) to add or remove comments from the current
line or a selected block of text. You can also com-
ment out many lines at a time with the alternative
comment notation introduced in “Comments” on
page 203.

Draw 31

Robot 1: Draw

This is P5, the Processing Robot. There are 10 di!erent pro-
grams to draw and animate him in the book—each one explores
a di!erent programming idea. P5’s design was inspired by Sput-
nik I (1957), Shakey from the Stanford Research Institute
(1966–1972), the fighter drone in David Lynch’s Dune (1984),
and HAL 9000 from 2001: A Space Odyssey (1968), among
other robot favorites.

The first robot program uses the drawing functions introduced
in this chapter. The parameters to the fill() and stroke() func-
tions set the gray values. The line(), ellipse(), and rect()
functions define the shapes that create the robot’s neck, anten-
nae, body, and head. To get more familiar with the functions, run
the program and change the values to redesign the robot:

size(720, 480);
strokeWeight(2);
background(0, 153, 204); // Blue background
ellipseMode(RADIUS);

// Neck
stroke(255); // Set stroke to white
line(266, 257, 266, 162); // Left

32 Getting Started with Processing

line(276, 257, 276, 162); // Middle
line(286, 257, 286, 162); // Right

// Antennae
line(276, 155, 246, 112); // Small
line(276, 155, 306, 56); // Tall
line(276, 155, 342, 170); // Medium

// Body
noStroke(); // Disable stroke
fill(255, 204, 0); // Set fill to orange
ellipse(264, 377, 33, 33); // Antigravity orb
fill(0); // Set fill to black
rect(219, 257, 90, 120); // Main body
fill(255, 204, 0); // Set fill to yellow
rect(219, 274, 90, 6); // Yellow stripe

// Head
fill(0); // Set fill to black
ellipse(276, 155, 45, 45); // Head
fill(255); // Set fill to white
ellipse(288, 150, 14, 14); // Large eye
fill(0); // Set fill to black
ellipse(288, 150, 3, 3); // Pupil
fill(153, 204, 255); // Set fill to light blue
ellipse(263, 148, 5, 5); // Small eye 1
ellipse(296, 130, 4, 4); // Small eye 2
ellipse(305, 162, 3, 3); // Small eye 3

Draw 33

4/Variables

A variable stores a value in memory so
that it can be used later in a program. The
variable can be used many times within a
single program, and the value is easily
changed while the program is running.

First Variables
One of the reasons we use variables is to avoid repeating our-
selves in the code. If you are typing the same number more than
once, consider using a variable instead so that your code is
more general and easier to update.

Example 4-1: Reuse the Same Values
For instance, when you make the y coordinate and diameter for
the three circles in this example into variables, the same values
are used for each ellipse:

size(480, 120);
int y = 60;
int d = 80;
ellipse(75, y, d, d); // Left
ellipse(175, y, d, d); // Middle
ellipse(275, y, d, d); // Right

35

Example 4-2: Change Values
Simply changing the y and d variables alters all three ellipses:

size(480, 120);
int y = 100;
int d = 130;
ellipse(75, y, d, d); // Left
ellipse(175, y, d, d); // Middle
ellipse(275, y, d, d); // Right

Without the variables, you’d need to change the y coordinate�
used in the code three times and the diameter six times. When�
comparing Example 4-1 on page 35 and Example 4-2 on page�
36, notice how the bottom three lines are the same, and only the�
middle two lines with the variables are di!erent. Variables allow�
you to separate the lines of the code that change from the lines�
that don’t, which makes programs easier to modify. For�
instance, if you place variables that control colors and sizes of�
shapes in one place, then you can quickly explore di!erent vis-
ual options by focusing on only a few lines of code.

Making Variables
When you make your own variables, you determine the name,�
the data type, and the value. The name is what you decide to call�
the variable. Choose a name that is informative about what the�
variable stores, but be consistent and not too verbose. For�
instance, the variable name “radius” will be clearer than “r”�
when you look at the code later.

The range of values that can be stored within a variable is�
defined by its data type. For instance, the integer data type can�
store numbers without decimal places (whole numbers). In�
code, integer is abbreviated to int. There are data types to store

36 Getting Started with Processing

each kind of data: integers, floating-point (decimal) numbers,
characters, words, images, fonts, and so on.

Variables must first be declared, which sets aside space in the
computer’s memory to store the information. When declaring a
variable, you also need to specify its data type (such as int),
which indicates what kind of information is being stored. After
the data type and name are set, a value can be assigned to the
variable:

int x; // Declare x as an int variable
x = 12; // Assign a value to x

This code does the same thing, but is shorter:

int x = 12; // Declare x as an int variable and assign a value

The name of the data type is included on the line of code that
declares a variable, but it’s not written again. Each time the data
type is written in front of the variable name, the computer thinks
you’re trying to declare a new variable. You can’t have two vari-
ables with the same name in the same part of the program
(Appendix D), so the program has an error:

int x; // Declare x as an int variable
int x = 12; // ERROR! Can't have two variables called x here

Each data type stores a di!erent kind of data. For instance, an
int variable can store a whole number, but it can’t store a num-
ber with decimal points, called a float. The word “float” refers
to “floating point,” which describes the technique used to store
a number with decimal points in memory. (The specifics of that
technique aren’t important here.)

A floating-point number can’t be assigned to an int because
information would be lost. For instance, the value 12.2 is di!er-
ent from its nearest int equivalent, the value 12. In code, this
operation will create an error:

int x = 12.2; // ERROR! A floating-point value can't fit in
an int

However, a float variable can store an integer. For instance, the
integer value 12 can be converted to the floating-point equiva-
lent 12.0 because no information is lost. This code works
without an error:

Variables 37

float x = 12; // Automatically converts 12 to 12.0

Data types are discussed in more detail in Appendix B.

Processing Variables
Processing has a series of special variables to store information
about the program while it runs. For instance, the width and
height of the window are stored in variables called width and
height. These values are set by the size() function. They can be
used to draw elements relative to the size of the window, even if
the size() line changes.

Example 4-3: Adjust the Size, See
What Follows
In this example, change the parameters to size() to see how it
works:

size(480, 120);
line(0, 0, width, height); // Line from (0,0) to (480, 120)
line(width, 0, 0, height); // Line from (480, 0) to (0, 120)
ellipse(width/2, height/2, 60, 60);

Other special variables keep track of the status of the mouse�
and keyboard values and much more. These are discussed in�
Chapter 5.

A Little Math
People often assume that math and programming are the same�
thing. Although knowledge of math can be useful for certain�
types of coding, basic arithmetic covers the most important�
parts.

38 Getting Started with Processing

Example 4-4: Basic Arithmetic

size(480, 120);
int x = 25;
int h = 20;
int y = 25;
rect(x, y, 300, h); // Top
x = x + 100;
rect(x, y + h, 300, h); // Middle
x = x - 250;
rect(x, y + h*2, 300, h); // Bottom

In code, symbols like +, –, and * are called operators. When
placed between two values, they create an expression. For
instance, 5 + 9 and 1024 – 512 are both expressions. The opera-
tors for the basic math operations are:

+ Addition

− Subtraction

* Multiplication

/ Division

= Assignment

Processing has a set of rules to define which operators take
precedence over others, meaning which calculations are made
first, second, third, and so on. These rules define the order in
which the code is run. A little knowledge about this goes a long
way toward understanding how a short line of code like this
works:

int x = 4 + 4 * 5; // Assign 24 to x

The expression 4 * 5 is evaluated first because multiplication
has the highest priority. Second, 4 is added to the product of
4 * 5 to yield 24. Last, because the assignment operator (the
equals sign) has the lowest precedence, the value 24 is assigned

Variables 39

to the variable x. This is clarified with parentheses, but the result
is the same:

int x = 4 + (4 * 5); // Assign 24 to x

If you want to force the addition to happen first, just move the
parentheses. Because parentheses have a higher precedence
than multiplication, the order is changed and the calculation is
a!ected:

int x = (4 + 4) * 5; // Assign 40 to x

An acronym for this order is often taught in math class:
PEMDAS, which stands for Parentheses, Exponents, Multiplica-
tion, Division, Addition, Subtraction, where parentheses have
the highest priority and subtraction the lowest. The complete
order of operations is found in Appendix C.

Some calculations are used so frequently in programming that
shortcuts have been developed; it’s always nice to save a few
keystrokes. For instance, you can add to a variable, or subtract
from it, with a single operator:

x += 10; // This is the same as x = x + 10
y -= 15; // This is the same as y = y - 15

It’s also common to add or subtract 1 from a variable, so short-
cuts exist for this as well. The ++ and −− operators do this:

x++; // This is the same as x = x + 1
y--; // This is the same as y = y - 1

More shortcuts can be found in the Processing Reference.

Repetition
As you write more programs, you’ll notice that patterns occur�
when lines of code are repeated, but with slight variations. A�
code structure called a for loop makes it possible to run a line of�
code more than once to condense this type of repetition into�
fewer lines. This makes your programs more modular and easier�
to change.

40 Getting Started with Processing

Example 4-5: Do the Same Thing Over
and Over
This example has the type of pattern that can be simplified with
a for loop:

size(480, 120);
strokeWeight(8);
line(20, 40, 80, 80);
line(80, 40, 140, 80);
line(140, 40, 200, 80);
line(200, 40, 260, 80);
line(260, 40, 320, 80);
line(320, 40, 380, 80);
line(380, 40, 440, 80);

Example 4-6: Use a for Loop
The same thing can be done with a for loop, and with less code:

size(480, 120);
strokeWeight(8);
for (int i = 20; i < 400; i += 60) {
 line(i, 40, i + 60, 80);
}

The for loop is di!erent in many ways from the code we’ve writ-
ten so far. Notice the braces, the { and } characters. The code
between the braces is called a block. This is the code that will be
repeated on each iteration of the for loop.

Inside the parentheses are three statements, separated by sem-
icolons, that work together to control how many times the code
inside the block is run. From left to right, these statements are
referred to as the initialization (init), the test, and the update:

Variables 41

for (init; test; update) {
 statements
}

The init sets the starting value, often declaring a new variable
to use within the for loop. In the earlier example, an integer
named i was declared and set to 20. The variable name i is fre-
quently used, but there’s really nothing special about it. The test
evaluates the value of this variable (here, it checks whether i
still less than 400), and the update changes the variable’s value
(adding 60 before repeating the loop). Figure 4-1 shows the
order in which they run and how they control the code state-
ments inside the block.

Figure 4-1. Flow diagram of a for loop

The test statement requires more explanation. It’s always a rela-
tional expression that compares two values with a relational
operator. In this example, the expression is “i < 400” and the
operator is the < (less than) symbol. The most common rela-
tional operators are:

> Greater than

< Less than

>= Greater than or equal to

<= Less than or equal to

== Equal to

!= Not equal to

42 Getting Started with Processing

The relational expression always evaluates to true or false. For
instance, the expression 5 > 3 is true. We can ask the question,
“Is five greater than three?” Because the answer is “yes,” we say
the expression is true. For the expression 5 < 3, we ask, “Is five
less than three?” Because the answer is “no,” we say the expres-
sion is false. When the evaluation is true, the code inside the
block is run, and when it’s false, the code inside the block is not
run and the for loop ends.

Example 4-7: Flex Your for Loop’s
Muscles
The ultimate power of working with a for loop is the ability to
make quick changes to the code. Because the code inside the
block is typically run multiple times, a change to the block is
magnified when the code is run. By modifying Example 4-6 on
page 41 only slightly, we can create a range of di!erent patterns:

size(480, 120);
strokeWeight(2);
for (int i = 20; i < 400; i += 8) {
 line(i, 40, i + 60, 80);
}

Example 4-8: Fanning Out the Lines

size(480, 120);
strokeWeight(2);

Variables 43

for (int i = 20; i < 400; i += 20) {
 line(i, 0, i + i/2, 80);
}

Example 4-9: Kinking the Lines

size(480, 120);
strokeWeight(2);
for (int i = 20; i < 400; i += 20) {
 line(i, 0, i + i/2, 80);
 line(i + i/2, 80, i*1.2, 120);
}

Example 4-10: Embed One for Loop in
Another
When one for loop is embedded inside another, the number of
repetitions is multiplied. First, let’s look at a short example, and
then we’ll break it down in Example 4-11 on page 45:

size(480, 120);
background(0);
noStroke();
for (int y = 0; y <= height; y += 40) {
 for (int x = 0; x <= width; x += 40) {
 fill(255, 140);
 ellipse(x, y, 40, 40);

44 Getting Started with Processing

 }
}

Example 4-11: Rows and Columns
In this example, the for loops are adjacent, rather than one
embedded inside the other. The result shows that one for loop
is drawing a column of 4 circles and the other is drawing a row
of 13 circles:

size(480, 120);
background(0);
noStroke();
for (int y = 0; y < height+45; y += 40) {
 fill(255, 140);
 ellipse(0, y, 40, 40);
}
for (int x = 0; x < width+45; x += 40) {
 fill(255, 140);
 ellipse(x, 0, 40, 40);
}

When one of these for loops is placed inside the other, as in
Example 4-10 on page 44, the 4 repetitions of the first loop are
compounded with the 13 of the second in order to run the code
inside the embedded block 52 times (4×13 = 52).

Example 4-10 on page 44 is a good base for exploring many
types of repeating visual patterns. The following examples show
a couple of ways that it can be extended, but this is only a tiny
sample of what’s possible. In Example 4-12 on page 46, the code
draws a line from each point in the grid to the center of the
screen. In Example 4-13 on page 46, the ellipses shrink with
each new row and are moved to the right by adding the y coordi-
nate to the x coordinate.

Variables 45

Example 4-12: Pins and Lines

size(480, 120);
background(0);
fill(255);
stroke(102);
for (int y = 20; y <= height-20; y += 10) {
 for (int x = 20; x <= width-20; x += 10) {
 ellipse(x, y, 4, 4);
 // Draw a line to the center of the display
 line(x, y, 240, 60);
 }
}

Example 4-13: Halftone Dots

size(480, 120);
background(0);
for (int y = 32; y <= height; y += 8) {
 for (int x = 12; x <= width; x += 15) {
 ellipse(x + y, y, 16 - y/10.0, 16 - y/10.0);
 }
}

46 Getting Started with Processing

Robot 2: Variables

The variables introduced in this program make the code look
more di"cult than Robot 1 (see “Robot 1: Draw” on page 32),
but now it’s much easier to modify, because numbers that
depend on one another are in a single location. For instance, the
neck can be drawn based on the bodyHeight variable. The group
of variables at the top of the code control the aspects of the
robot that we want to change: location, body height, and neck
height. You can see some of the range of possible variations in
the figure; from left to right, here are the values that correspond
to them:

y = 390
bodyHeight = 180
neckHeight = 40

y = 460
bodyHeight = 260
neckHeight = 95

y = 310
bodyHeight = 80
neckHeight = 10

y = 420
bodyHeight = 110
neckHeight = 140

When altering your own code to use variables instead of num-
bers, plan the changes carefully, then make the modifications in
short steps. For instance, when this program was written, each
variable was created one at a time to minimize the complexity of
the transition. After a variable was added and the code was run
to ensure it was working, the next variable was added:

Variables 47

int x = 60; // x coordinate
int y = 390; // y coordinate
int bodyHeight = 180; // Body height
int neckHeight = 40; // Neck height
int radius = 45;
int ny = y - bodyHeight - neckHeight - radius; // Neck y

size(170, 480);
strokeWeight(2);
background(0, 153, 204);
ellipseMode(RADIUS);

// Neck
stroke(255);
line(x+2, y-bodyHeight, x+2, ny);
line(x+12, y-bodyHeight, x+12, ny);
line(x+22, y-bodyHeight, x+22, ny);

// Antennae
line(x+12, ny, x-18, ny-43);
line(x+12, ny, x+42, ny-99);
line(x+12, ny, x+78, ny+15);

// Body
noStroke();
fill(255, 204, 0);
ellipse(x, y-33, 33, 33);
fill(0);
rect(x-45, y-bodyHeight, 90, bodyHeight-33);
fill(255, 204, 0);
rect(x-45, y-bodyHeight+17, 90, 6);

// Head
fill(0);
ellipse(x+12, ny, radius, radius);
fill(255);
ellipse(x+24, ny-6, 14, 14);
fill(0);
ellipse(x+24, ny-6, 3, 3);
fill(153, 204, 255);
ellipse(x, ny-8, 5, 5);
ellipse(x+30, ny-26, 4, 4);
ellipse(x+41, ny+6, 3, 3);

48 Getting Started with Processing

